Age-related changes in trabecular architecture differ in female and male C57BL/6J mice.
نویسندگان
چکیده
UNLABELLED We used microCT and histomorphometry to assess age-related changes in bone architecture in male and female C57BL/6J mice. Deterioration in vertebral and femoral trabecular microarchitecture begins early, continues throughout life, is more pronounced at the femoral metaphysis than in the vertebrae, and is greater in females than males. INTRODUCTION Despite widespread use of mice in the study of musculoskeletal disease, the age-related changes in murine bone structure and the relationship to whole body BMD changes are not well characterized. Thus, we assessed age-related changes in body composition, whole body BMD, and trabecular and cortical microarchitecture at axial and appendicular sites in mice. MATERIALS AND METHODS Peripheral DXA was used to assess body composition and whole body BMD in vivo, and microCT and histomorphometry were used to measure trabecular and cortical architecture in excised femora, tibia, and vertebrae in male and female C57BL/6J mice at eight time-points between 1 and 20 mo of age (n = 6-9/group). RESULTS Body weight and total body BMD increased with age in male and female, with a marked increase in body fat between 6 and 12 mo of age. In contrast, trabecular bone volume (BV/TV) was greatest at 6-8 wk of age and declined steadily thereafter, particularly in the metaphyseal region of long bones. Age-related declines in BV/TV were greater in female than male. Trabecular bone loss was characterized by a rapid decrease in trabecular number between 2 and 6 mo of age, and a more gradual decline thereafter, whereas trabecular thickness increased slowly over life. Cortical thickness increased markedly from 1 to 3 mo of age and was maintained or slightly decreased thereafter. CONCLUSIONS In C57BL/6J mice, despite increasing body weight and total body BMD, age-related declines in vertebral and distal femoral trabecular bone volume occur early and continue throughout life and are more pronounced in females than males. Awareness of these age-related changed in bone morphology are critical for interpreting the skeletal response to pharmacologic interventions or genetic manipulation in mice.
منابع مشابه
Long-term administration of olanzapine induces adiposity and increases hepatic fatty acid desaturation protein in female C57BL/6J mice
Objective(s): Weight gain and metabolic disturbances such as dyslipidemia, are frequent side effects of second-generation antipsychotics, including olanzapine. This study examined the metabolic effects of chronic olanzapine exposure. In addition, we investigated the hepatic fatty acid effects of olanzapine in female C57BL/6J mice fed a normal diet.Materials and Methods: Female C57BL/6J mice ora...
متن کاملEffect of neuregulin-1 on the auditory cortex in adult C57BL/6J mice
Objective(s): We sought to explore whether neuregulin-1(NRG1) would have a protective effect on the auditory cortices of adult C57BL/6J mice.Materials and Methods: We used RTPCR and Western blot (WB) to detect the expression of NRG1 and ERBB4 (the receptor of NRG1) in the auditory cortices of C57BL/6J mice of different ages (6–8 weeks an...
متن کاملAge-related Changes in Bone Architecture Vary among Inbred Strains of Mice
INTRODUCTION: There is strong evidence for genetic contributions to bone mass and architecture in mice and humans. Inbred mouse strains have recently been established as a valuable tool for studying the genetic regulation of skeletal phenotypes. We previously reported sex-related differences in age-related bone loss in C57Bl/6J mice [1] and mouse strain-related differences in the skeletal respo...
متن کاملSex difference of hyperinsulinemia in the C57BL/6J-Daruma (obese) mouse
The C57BL/6J-Daruma mouse is an animal model of obesity derived from the original genetically obese ICR-Daruma mouse by transfer of the phenotype into the C57BL/6J background by backcrossing into the C57BL/6J strain. Although, like the original ICR-Daruma mouse model, both male and female C57BL/6J-Daruma mice develop obesity, the latter strain shows sex differences in several phenotypes. A sex ...
متن کاملChanges in Bone Structure and Strength during Aging in Male and Female BALB/c Mice
Introduction: With aging, there are well-documented changes in the structure and strength of the human skeleton. Periosteal and endocortical expansion of the diaphyses lead to increased moments of inertia, a positive geometric change that is offset partly by decreased cortical bone material strength. Trabecular bone density decreases with aging leading to loss of bone strength at sites rich in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
دوره 22 8 شماره
صفحات -
تاریخ انتشار 2007